
58 The Delphi Magazine Issue 53

COM Corner:
CoPourri
by Steve Teixeira

Potpourri
Pronunciation: “pO-pu-’rE
Function: noun
Etymology: French pot pourri, literally, rotten pot
Date: 1749
1: a mixture of flowers, herbs, and spices that is usually kept in a jar
and used for scent
2: a miscellaneous collection: MEDLEY

CoPourri
Pronunciation: “kO-pu-’rE
Function: noun
Etymology: English COM, French pourri, literally, COM pot
Date: 1999
1: A miscellaneous collection of COM tips derived from the questions
of COM developers and readers of The Delphi Magazine
2: COM tips that smell nice

I get a lot of COM questions from
readers of this magazine and

visitors to Borland’s newsgroups.
Often, there are so many that I
can’t always respond to every
query, but I try to make up for it by
keeping track of questions and
answering them in this column.
Many of these questions don’t
merit an entire column, so I like to
periodically set out a fresh batch of
CoPourri and address several
issues in a single column. I hope
you enjoy the collection I have set
out this month, as I cover how to
tell whether an ActiveX control is
in run or design mode, how to
implement multiple IDispatches on
a single automation object, and

how to use the Running Object
Table (ROT).

The Running Man
Determining whether a component
is operating in run or design mode
is something that VCL component
developers take for granted. As
you probably know this can be
accomplished simply by checking
the ComponentState set property for
the csDesigning member. What
about us ActiveX control develop-
ers? Is it possible for us to easily
determine whether an ActiveX
control is currently operating in
run or in design mode? The answer
is yes, but it’s not quite so
straightforward.

The first step on the path to
achieving this ActiveX version of

self awareness is to obtain some
interface for the COM object that
implements the container for the
ActiveX control. The most conve-
nient container interface accessi-
ble to you from within an ActiveX
control is IOleClientSite, which
can be obtained by Query-
Interfacing yourself for IOle-
Object and then calling the
IOleObject.GetClientSite method.
Once you have this interface into
the container object, you can
QueryInterface it for IAmbient-
Dispatch. IAmbientDispatch is a
dispinterface that provides you
with all kinds of great information
on the control’s current operating
environment, and is defined in the
AxCtrls unit as shown in Listing 1.

In particular, we are interested
in the UserMode property. When
this property is True, the control is
in run mode, and when False, the
control is in design mode. The
IsControlRunning function in List-
ing 2 consolidates these steps.

Note that this method is called
differently depending on whether
you are using it from an ActiveX
control or an ActiveForm. From an
ActiveX control, you simply pass
Self to IsControlRunning, since the
IOleObject implementation lives in
the TActiveXControl class:

if IsControlRunning(Self) then
... // from ActiveX control

However, the IOleObject imple-
mentation for an ActiveForm
resides in the ActiveForm’s Active-
FormControl property. Therefore,
the call from an ActiveForm would
look more like this:

if IsControlRunning(
ActiveFormControl) then
... // from an ActiveForm

As a simple example, I added the
IsControlRunning function to an
ActiveForm project, and put these
lines in the PaintEvent method for
my ActiveForm:

if IsControlRunning(
ActiveFormControl) then
Color := clBlue

else
Color := clRed;

IAmbientDispatch = dispinterface
['{00020400-0000-0000-C000-000000000046}']
property BackColor: Integer dispid DISPID_AMBIENT_BACKCOLOR;
property DisplayName: WideString dispid DISPID_AMBIENT_DISPLAYNAME;
property Font: IFontDisp dispid DISPID_AMBIENT_FONT;
property ForeColor: Integer dispid DISPID_AMBIENT_FORECOLOR;
property LocaleID: Integer dispid DISPID_AMBIENT_LOCALEID;
property MessageReflect: WordBool dispid DISPID_AMBIENT_MESSAGEREFLECT;
property ScaleUnits: WideString dispid DISPID_AMBIENT_SCALEUNITS;
property TextAlign: Smallint dispid DISPID_AMBIENT_TEXTALIGN;
property UserMode: WordBool dispid DISPID_AMBIENT_USERMODE;
property UIDead: WordBool dispid DISPID_AMBIENT_UIDEAD;
property ShowGrabHandles: WordBool dispid DISPID_AMBIENT_SHOWGRABHANDLES;
property ShowHatching: WordBool dispid DISPID_AMBIENT_SHOWHATCHING;
property DisplayAsDefault: WordBool dispid DISPID_AMBIENT_DISPLAYASDEFAULT;
property SupportsMnemonics: WordBool dispid DISPID_AMBIENT_SUPPORTSMNEMONICS;
property AutoClip: WordBool dispid DISPID_AMBIENT_AUTOCLIP;

end;

➤ Listing 1

January 2000 The Delphi Magazine 59

The idea here is that the form
should appear blue when the
ActiveForm is in run mode and red
when the ActiveForm is in design
mode. Figures 1 and 2 demonstrate
the effectiveness of this technique.

One gotcha with this approach
is that it cannot be used from
within the Initialize and
InitializeControl methods,
because they are executed before
the client site is property initial-
ized. Therefore, you’ll have to call
IsControlRunning in a method that
is called after the client site is
initialized, as in my example.

Multiple IDispatches?
One of the whole points of COM is
the ability to surface multiple

interfaces from a single object.
This enables object implementers
to provide multiple well-defined
means for manipulating an object’s
properties and behavior. We
already know that multiple inter-
faces on a single object work fine,
because every automation object
you create supports at least
IUnknown and IDispatch. However,
what happens when you wish to
support more than one IDispatch
interface on a single object?

Well, when you’re working with
early-bound interfaces, this kind of
thing works swimmingly: your
compiler generates vtables for all
of the interfaces in your object,
your clients query for those inter-
faces to receive the vtables, your
clients call via those vtables,
things just seem to go according to

plan! However, throw a little late
binding into the mix and suddenly
things are not going quite so swell
as before.

➤ Below: Figure 1
Bottom: Figure 2

function IsControlRunning(Control: IUnknown): Boolean;
var
OleObj: IOleObject;
Site: IOleClientSite;

begin
Result := True;
// Get control's IOleObject pointer. From that, get container's
// IOleClientSite. From that, get IAmbientDispatch.
if (Control.QueryInterface(IOleObject, OleObj) = S_OK) and
(OleObj.GetClientSite(Site) = S_OK) and (Site <> nil) then
Result := (Site as IAmbientDispatch).UserMode;

end;

➤ Listing 2

60 The Delphi Magazine Issue 53

To illustrate, imagine a Delphi
Automation object defined as
shown in Listing 3 (copied from the
type library editor).

As you can see, the coclass is
called MultiObj, and it supports
two IDispatch descendants,
IMultiObj and ISecondIntf. These
interfaces each have one method,
SomeMethod and OtherMethod,
respectively. The implementation
for these methods simply shows a
dialog, as you can see in Listing 4

In creating a client project for
this Automation server, a few lines
of code on a button click will
suffice:

procedure TForm1.Button1Click(
Sender: TObject);

var
V: OleVariant;

begin
V := CoMultiObj.Create;
V.SomeMethod;

end;

As you can see, this client uses
early binding to call the method of
the IMultiObj interface of the
Automation server. The results of
clicking the button are shown in
Figure 3.

Modifying the client to call a
method of the method of the
ISecondIntf interface requires only
changing the line which calls
SomeMethod to call OtherMethod:

V.OtherMethod;

After making the change, the result
of compiling, running, and clicking
the button is shown in Figure 4.

This simple experiment illus-
trates the fact that you can only
call methods of one of the
IDispatch interfaces through late
binding. The problem here is that

COM only supports
one late-bound
IDispatch interface
per object. This can
definitely make for

[
uuid(94ED6F09-5C0D-40BA-BC06-0069D77719AF),
version(1.0),
helpstring("Project1 Library")

]
library Project1
{
importlib("StdOle2.Tlb");
importlib("STDVCL40.DLL");
[
uuid(7E34A054-0931-405D-8D72-11F01C3AFD55),
version(1.0),
helpstring("Dispatch interface for MultiObj Object"),
dual,
oleautomation

]
interface IMultiObj: IDispatch
{
[id(0x00000001)]
HRESULT _stdcall SomeMethod(void);

};
[

uuid(D407D6A0-88D2-4BBF-8B1E-EE44C3C7CA8C),
version(1.0),
dual,
oleautomation

]
interface ISecondIntf: IDispatch
{
[id(0x00000001)]
HRESULT _stdcall OtherMethod(void);

};
[
uuid(CAB19A4E-73ED-4D3A-83AB-01AFE4BD3394),
version(1.0),
helpstring("MultiObj Object")

]
coclass MultiObj
{
[default] interface IMultiObj;
interface ISecondIntf;

};
};

➤ Listing 3
procedure TMultiObj.OtherMethod;
begin
ShowMessage('OtherMethod was called');

end;
procedure TMultiObj.SomeMethod;
begin
ShowMessage('SomeMethod was called');

end;

➤ Listing 4

some developer confusion, and I’m
certain this is one of the things
COM guru Don Box had in mind
when he referred to the ‘general
cruftiness of all things IDispatch’.

Unfortunately, there isn’t a way
to defeat this problem. However, it
is possible to control which inter-
face you wish to make accessible
via early binding. You do this by
marking the interface you wish to
be early-bindable as the ‘default’
interface of the coclass in the type
library editor.

Brain ROT
A common question among Delphi
COM developers is, ‘Why can’t I get
to my running Delphi Automation
server using the GetActiveObject
API?’

The answer to this is: ‘Because
Delphi applications do not auto-
matically add themselves to the
list that GetActiveObject looks
into’. That list is known as the Run-
ning Object Table, or ROT for
short. Applications can register
COM objects into the ROT using
the RegisterClassObject API. Once
that is done, the registered COM
object will be accessible to other
processes on the same machine
using the GetActiveObject API.

Listing 5 shows a simple Auto-
mation server that registers itself
with the ROT. Notice that the
object also cleans up after itself by
calling RevokeActiveObject prior to
its destruction. The client code for
connecting to this server is shown
in Listing 6. Figure 5 shows the
server application running along-
side a couple of clients.

➤ Figure 3

➤ Figure 4

January 2000 The Delphi Magazine 61

I hope you enjoyed this month’s
CoPourri. Keep sending me those
COM questions, and I’ll pick the
best and publish the answers in
COM Corner.

Steve Teixeira is VP of software
development of DeVries Data
Systems (www.dvdata.com), an
interactive architect firm based in
Silicon Valley. You can email Steve
at steve@dvdata.com. Thanks to
Merriam-Webster’s WWWebster
Dictionary at www.m-w.com for
the nice definition of potpourri.

unit SrvMain;
interface
uses ComObj, ActiveX, Srv_TLB, StdVcl;
type
TRegObj = class(TAutoObject, IRegObj)
private
FRegCookie: Integer;

protected
procedure AddString(const Value: WideString); safecall;

public
destructor Destroy; override;
procedure Initialize; override;

end;
implementation
uses ComServ, Dialogs, SrvU;
{ TRegObj }
destructor TRegObj.Destroy;
begin

RevokeActiveObject(FRegCookie, nil);
inherited Destroy;

end;
procedure TRegObj.Initialize;
begin
inherited Initialize;
OleCheck(RegisterActiveObject(Self, CLASS_RegObj,

ACTIVEOBJECT_WEAK, FRegCookie));
end;
procedure TRegObj.AddString(const Value: WideString);
begin
MainForm.Memo.Lines.Add(Value);

end;
initialization
TAutoObjectFactory.Create(ComServer, TRegObj,
Class_RegObj, ciMultiInstance, tmApartment);

end.

procedure TMainForm.FormCreate(Sender: TObject);
var Unk: IUnknown;
begin
if Succeeded(GetActiveObject(CLASS_RegObj, nil, Unk)) and (Unk <> nil) then
FSrv := Unk as IRegObj

else
FSrv := CoRegObj.Create;

end;

➤ Figure 5

➤ Listing 5

➤ Listing 6

	The Running Man
	Multiple IDispatches?
	Brain ROT

